Covariance Structure of Parabolic Stochastic Partial Differential Equations
نویسنده
چکیده
In this paper parabolic random partial differential equations and parabolic stochastic partial differential equations driven by a Wiener process are considered. A deterministic, tensorized evolution equation for the second moment and the covariance of the solutions of the parabolic stochastic partial differential equations is derived. Well-posedness of a space-time weak variational formulation of this tensorized equation is established.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملCovariance Structure of Parabolic Stochastic Partial Differential Equations with Multiplicative Lévy Noise
We consider parabolic stochastic partial differential equations driven by multiplicative Lévy noise of an affine type. For the second moment of the mild solution, we derive a well-posed deterministic space-time variational problem posed on tensor product spaces, which subsequently leads to a deterministic equation for the covariance function.
متن کاملInvariant Manifold Reduction and Bifurcation for Stochastic Partial Differential Equations
Stochastic partial differential equations arise as mathematical models of complex multiscale systems under random influences. Invariant manifolds often provide geometric structure for understanding stochastic dynamics. In this paper, a random invariant manifold reduction principle is proved for a class of stochastic partial differential equations. The dynamical behavior is shown to be described...
متن کاملNumerical Approximation of Parabolic Stochastic Partial Differential Equations
The topic of the talk were the time approximation of quasi linear stochastic partial differential equations of parabolic type. The framework were in the setting of stochastic evolution equations. An error bounds for the implicit Euler scheme was given and the stability of the scheme were considered.
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کامل